Search results for "Sherwood number"
showing 5 items of 5 documents
CFD prediction of shell-side flow and mass transfer in regular fiber arrays
2021
Numerical simulations were conducted for fully developed, steady-state flow with mass transfer in fiber bundles arranged in regular lattices. The porosity was 0.5 and the Schmidt number 500. Several combinations of axial flow, transverse flow and flow attack angles in the cross-section plane were considered. The axial and transverse Reynolds numbers Rez , ReT were made to vary from 10(^−4) to 10(^2). Concentration boundary conditions, and the definition of an average Sherwood number, were addressed. Results for the hydraulic permeability were compared with the literature. Both hexagonal and square lattices were found to be hydraulically almost isotropic up to transverse flow Reynolds number…
Mass transfer in ducts with transpiring walls
2019
Abstract The problem of mass transfer in ducts with transpiring walls is analysed: the concepts of “solvent” and “solute” fluxes are introduced, all possible sign combinations for these fluxes are considered, and relevant examples from membrane processes such as electrodialysis, reverse osmosis and filtration are identified. Besides the dimensionless numbers commonly defined in studying flow and mass transfer problems, new dimensionless quantities appropriate to transpiration problems are introduced, and their limiting values, associated with “drying”, “desalting” and “saturation” conditions, are identified. A simple model predicting the Sherwood number Sh under all possible flux sign combi…
The use of non-cavitating coupling fluids for intensifying sonoelectrochemical processes
2020
Abstract For the first time, we have investigated the beneficial effects of non-cavitating coupling fluids and their moderate overpressures in enhancing mass-transfer and acoustic energy transfer in a double cell micro-sonoreactor. Silicon and engine oils of different viscosities were used as non-cavitating coupling fluids. A formulated monoethylene glycol (FMG), which is a regular cooling fluid, was also used as reference. It was found that silicon oil yielded a maximum acoustic energy transfer (3.05 W/cm2) from the double jacketed cell to the inner cell volume, at 1 bar of coupling fluid overpressure which was 2.5 times higher than the regular FMG cooling fluid. It was also found that the…
CFD prediction of flow, heat and mass transfer in woven spacer-filled channels for membrane processes
2021
Abstract Flow and heat or mass transfer in channels provided with woven spacers made up of mutually orthogonal filaments were studied by Computational Fluid Dynamics. The problem addressed was the combined effect of the parameters that characterize the process: pitch to height ratio P/H (2, 3 and 4), flow attack angle θ (0, 7, 15, 20, 30, 40 and 45°) and Reynolds number Re (from ~1 to ~4000). The Prandtl number was 4.33, representative of water at ~40°C, while the Schmidt number was 600, representative of NaCl solutions. Simulations were performed by the finite volume code Ansys CFX™ 18.1 using very fine grids of ~6 to ~14 million volumes. For Re > ~400, the SST turbulence model was used to…
A 2-D model of electrodialysis stacks including the effects of membrane deformation
2021
Abstract Membrane-based processes have gained a relevant role in many engineering applications. Much effort has been devoted to thoroughly understand the fundamental phenomena behind them. However, membrane deformation has been taken into consideration only recently, although much evidence has shown its impacts in many applications. This work presents a novel 2-D, multi-scale, semi-empirical process model able to predict the behavior and the performance of Electrodialysis (ED) systems in cross-flow configurations in the presence and absence of local membrane deformations. The model exploits the results and the simulation approaches of previous fluid-structure investigations performed by the…